Categories
Trigonometry

Trigonometric Ratios of Standard Angles in First and Second Quadrants

In this article, we shall find values of trigonometric ratios of standard angles in the first and the second quadrants using a standard unit circle.

A circle with the centre at the origin and radius 1 is a standard unit circle. Let P(x, y) be any point on the unit circle with m∠ XOP = θ. Now P lies on the unit circle. Hence l(OP) = 1.

Trigonometric Ratios

Let PM be perpendicular to OX. Thus ΔOMP is a right-angled triangle.

By Pythagoras theorem

OM2 + MP2 = OP2

x2 + y2 = 1

Then by definition of trigonometric ratios

sin θ = length of the opposite side / Length of the hypotenuse

sin θ = PM/ OP = y/1 = y

cos θ= length of the adjacent side / Length of the hypotenuse

cos θ= OM/ OP = x/1 = x

tan θ = length of opposite side / length of adjacent side

tan θ = PM/OM = y/x  (x not equal to 0)

cosec θ =  Length of hypotenuse / length of opposite side

cosec θ == OP/ PM = 1/y (y not equal to 0)

sec θ =  Length of hypotenuse / length of adjacent side

sec θ = OP/ OM = 1/x (x not equal to 0)

cot θ = length of adjacent side / length of opposite side

cot θ = OM/PM = x/y  (y not equal to 0)

From above values we can see that

cosec θ = 1/sin θ (if sin θ not equal to zero)

sec θ = 1/cos θ (if cos θ not equal to zero)

cot θ = 1/tan θ (if sin θ not equal to zero)

Notes:

  • The trigonometric functions do not depend on the position of point P on the terminal ray but they depend on the measure of angle q.
  • Coterminal angles have the same trigonometric functions
  • Since x = cos θ and y = sinθ, point P has coordinates (cos θ, sin θ).

Let P(x, y) be on the standard unit circle such that

x2 + y2 = 1

x2  ≤  1

– 1 ≤ x ≤ 1

– 1 ≤ cos θ ≤ 1

Similarly

y2  ≤  1

– 1 ≤ y ≤ 1

– 1 ≤ sin θ ≤ 1

Similarly

sec θ ≥ 1 or sec θ ≤ – 1

cosec θ ≥ 1 or cosec θ ≤ – 1

tan θ and cot θ can be any real numbers.

Trigonometric Ratios of 0o or 0c:

Let us consider a standard unit circle

Trigonometric Ratios

Let m∠ AOP = θ = 0o = 0c

Ray OA is the initial arm of the angle.

The terminal arm of the angle ray OP intersects the circle at P(1, 0)

Hence x = 1 an y = 0. Thus

sin 0o = y = 0

cos 0o =  x = 1

tan 0o =  y/x  = 0/1 = 0

cosec 0o = 1/y (Not defined since y = 0)

sec 0o  =  1/x = 1/1 = 1

cot 0o = x/y (Not defined since y = 0)

sin 0o   sin (0)ccos 0o   cos (0)ctan 0o   tan (0)ccosec 0o   cosec (0)csec 0o   sec (0)ccot 0o cot (0)c
0101

Trigonometric Ratios of 30o or (π/6)c:

Let us consider a standard unit circle

Trigonometric Ratios

Let m∠ AOP = θ = 30o = (π/6)c

Ray OA is the initial arm of the angle.

The terminal arm of the angle ray OP intersects the circle at P(x, y)

Let PM be perpendicular to OX. Thus ΔOMP is 30o-60o-90o triangle

PM = 1/2(OP) = 1/2 (1) = 1/2  (side opposite to 30o)

OM = √3/2(OP) = √3/2 (1) = √3/2  (side opposite to 60o)

Point P is in the first quadrant

Hence x = √3/2 an y = 1/2. Thus

sin 30o = y = 1/2

cos 30o =  x = √3/2

tan 30o =  y/x  = (1/2)/(√3/2) = 1/√3

cosec 30o = 1/y = 1/(1/2) = 2

sec 30o  =  1/x = 1/(√3/2) = 2/√3

cot 30o = x/y = (√3/2)/(1/2) = √3

sin 30o   sin (π/6)ccos 30o   cos (π/6)ctan 30o   tan (π/6)ccosec 30o   cosec (π/6)csec 30o   sec (π/6)ccot 30o cot (π/6)c
1/2√3/21/√322/√3√3

Trigonometric Ratios of 45o or (π/4)c:

Let us consider a standard unit circle

Trigonometric Ratios

Let m∠ AOP = θ = 45o = (π/4)c

Ray OA is the initial arm of the angle.

The terminal arm of the angle ray OP intersects the circle at P(x, y)

Let PM be perpendicular to OX. Thus ΔOMP is 45o-45o-90o triangle

PM = 1/√2(OP) = 1/√2 (1) = 1/√2  (side opposite to 45o)

OM = 1/√2(OP) = 1/√2 (1) = 1/√2  (side opposite to 45o)

Point P is in the first quadrant

Hence x = 1/√2 an y = 1/√2. Thus

sin 45o = y = 1/√2

cos 45o =  x = √1/√2

tan 45o =  y/x  = (1/√2)/(1/√2) = 1

cosec 45o = 1/y = 1/(1/√2) = √2

sec 45o  =  1/x = 1/(1/√2) = √2

cot 45o = x/y = (1/√2)/(1/√2) = 1

sin 45o   sin (π/4)ccos 45o   cos (π/4)ctan 45o   tan (π/4)ccosec 45o   cosec (π/4)csec 45o   sec (π/4)ccot 45o cot (π/4)c
1/√21/√21√2√21

Trigonometric Ratios of 60o or (π/3)c:

Let us consider a standard unit circle

Trigonometric Ratios

Let m∠ AOP = θ = 60o = (π/3)c

Let PM be perpendicular to OX. Thus ΔOMP is 30o-60o-90o triangle

PM = √3/2(OP) = 1/2 (1) = √3/2  (side opposite to 60o)

OM = 1/2(OP) = √3/2 (1) = 1/2  (side opposite to 30o)

Point P is in the first quadrant

Hence x = 1/2 an y = √3/2. Thus

sin 60o = y = √3/2

cos 60o =  x = 1/2

tan 60o =  y/x  = (√3/2)/(1/2) = √3

cosec 60o = 1/y = 1/(√3/2) = 2/√3

sec 60o  =  1/x = 1/(1/2) = 2

cot 60o = x/y = (1/2)/(√3/2) = 1/√3

sin 60o   sin (π/3)ccos 60o   cos (π/3)ctan 60o   tan (π/3)ccosec 60o   cosec (π/3)csec 60o   sec (π/3)ccot 60o cot (π/3)c
√3/21/2√32/√321/√3

Trigonometric Ratios of 90o or (π/2)c:

Let us consider a standard unit circle

blank

Let m∠ AOP = θ = 90o = (π/2)c

Let PM be perpendicular to OX. M coicides with O

PM = 1  and OM = 0

Point P is on postive y-axis

Hence x = 0 an y = 1. Thus

sin 90o = y = 1

cos 90o =  x = 0

tan 90o =  y/x  (Not defined since x = 0)

cosec 90o = 1/y = 1/1 = 1

sec 90o  =  1/x  (Not defined since x = 0)

cot 90o = x/y = 0/1 = 0

sin 90o   sin (π/2)ccos 90o   cos (π/2)ctan 90o   tan (π/2)ccosec 90o   cosec (π/2)csec 90o   sec (π/2)ccot 90o cot (π/2)c
1010

Trigonometric Ratios of 120o or (2π/3)c:

Let us consider a standard unit circle

blank

Let m∠ AOP = θ = 120o = (2π/3)c

m∠ POM = 60o

Let PM be perpendicular to OX’. Thus ΔOMP is 30o-60o-90o triangle

PM = √3/2(OP) = 1/2 (1) = √3/2  (side opposite to 60o)

OM = 1/2(OP) = √3/2 (1) = 1/2  (side opposite to 30o)

Point P is in the second quadrant

Hence x = – 1/2 an y = √3/2. Thus

sin 120o = y = √3/2

cos 120o =  x = -1/2

tan 120o =  y/x  = (√3/2)/(-1/2) = -√3

cosec 120o = 1/y = 1/(√3/2) = 2/√3

sec 120o  =  1/x = 1/(-1/2) = – 2

cot 120o = x/y = (-1/2)/(√3/2) = – 1/√3

sin 120o   sin (2π/3)ccos 120o   cos (2π/3)ctan 120o   tan (2π/3)ccosec 120o   cosec (2π/3)csec 120o   sec (2π/3)ccot 120o cot (2π/3)c
√3/2-1/2-√32/√3-2-1/√3

Trigonometric Ratios of 135o or (3π/4)c:

Let us consider a standard unit circle

blank

Let m∠ AOP = θ = 135o = (3π/4)c

m∠ POM = 45o

Ray OA is the initial arm of the angle.

The terminal arm of the angle ray OP intersects the circle at P(x, y)

Let PM be perpendicular to OX’. Thus ΔOMP is 45o-45o-90o triangle

PM = 1/√2(OP) = 1/√2 (1) = 1/√2  (side opposite to 45o)

OM = 1/√2(OP) = 1/√2 (1) = √1/√2  (side opposite to 45o)

Point P is in the second quadrant

Hence x = – 1/√2 an y = 1/√2. Thus

sin 135o = y = 1/√2

cos 135o =  x = – 1/√2

tan 135o =  y/x  = (-1/√2)/(1/√2) = – 1

cosec 135o = 1/y = 1/(1/√2) = √2

sec 135o  =  1/x = 1/(-1/√2) = – √2

cot 135o = x/y = (-1/√2)/(1/√2) = – 1

sin 135o   sin (3π/4)ccos 135o   cos (3π/4)ctan 135o   tan (3π/4)ccosec 135o   cosec (3π/4)csec 135o   sec (3π/4)ccot 135o cot (3π/4)c
1/√2– 1/√2– 1√2– √2– 1

Trigonometric Ratios of 150o or (5π/3)c:

Let us consider a standard unit circle

blank

Let m∠ AOP = θ = 150o = (5π/6)c

m∠ POM = 30o

Ray OA is the initial arm of the angle.

The terminal arm of the angle ray OP intersects the circle at P(x, y)

Let PM be perpendicular to OX’. Thus ΔOMP is 30o-60o-90o triangle

PM = 1/2(OP) = 1/2 (1) = 1/2  (side opposite to 30o)

OM = √3/2(OP) = √3/2 (1) = √3/2  (side opposite to 60o)

Point P is in the second quadrant

Hence x = – √3/2 an y = 1/2. Thus

sin 150o = y = 1/2

cos 150o =  x = – √3/2

tan 150o =  y/x  = (1/2)/(-√3/2) = – 1/√3

cosec 150o = 1/y = 1/(1/2) = 2

sec 150o  =  1/x = 1/(-√3/2) = – 2/√3

cot 150o = x/y = (-√3/2)/(1/2) = – √3

sin 150o   sin (5π/6)ccos 150o   cos (5π/6)ctan 150o   tan (5π/6)ccosec 150o   cosec (5π/6)csec 150o   sec (5π/6)ccot 150o cot (5π/6)c
1/2– √3/2– 1/√32– 2/√3– √3

Trigonometric Ratios of 180o or πc:

Let us consider a standard unit circle

blank

Let m∠ AOP = θ = 180o = πc

Ray OA is the initial arm of the angle.

The terminal arm of the angle ray OP intersects the circle at P(-1, 0)

Hence x = -1 an y = 0. Thus

sin 180o = y = 0

cos 180o =  x = – 1

tan 180o =  y/x  = 0/-1 = 0

cosec180o = 1/y (Not defined since y = 0)

sec 180o  = 1/x = 1/-1 = – 1

cot 180o = x/y (Not defined since y = 0)

sin 180o   sin (π)ccos 180o   cos (π)ctan 180o   tan (π)ccosec 180o   cosec (π)csec 180o   sec (π)ccot 180o cot (π)c
0– 10– 1

Leave a Reply

Your email address will not be published. Required fields are marked *