Categories
Algebra

Logarithms

In this article, we shall study to solve problems on logarithms in which a relation is given using which we have to prove another relation.

Laws of Logarithms

  • Log a + Log b = Log (ab) (Law of Product)
  • Log a – log b = log (a/b)    b ≠ 0 (law of Quotient)
  • Log am = m Log a (Law of exponent)
  • Log (1) = 0
  • Logaa = 1

Example 01:

If blank, then Show that abc = 1

Solution:

Given

Logarithms

∴Log a = k(y – z) ……………. (1)

∴ Log b = k(z – x) ……………. (2)

∴ Log c = k(x – y) ……………. (3)

Adding equations (1), (2) and (3)

Log a+ Log b + Log c  = k(y – z) + k(z – x) + k(x – y)

∴ Log (abc) = k(y – z + z – x + x – y)

∴ Log (abc) = 0

∴ Log (abc) = log (1)

∴ abc = 1

(Proved as required)

Example 02:

If blank, then Show that axbycz = 1

Solution:

Given

Logarithms

∴ Log ax = k(xy – xz) ……………. (1)

∴ Log by = k(yz – xy) ……………. (2)

∴ Log cz = k(xz – yz) ……………. (3)

Adding equations (1), (2) and (3)

Log ax + Log by + Log cz  = k(xy – xz) + k(yz – xy) + k(xz – yz)

∴ Log (ax by cz ) = k(xy – xz + yz – xy + xz – yz)

∴Log (ax by cz ) = 0

∴ Log (ax by cz ) = log (1)

∴ ax by cz = 1

(Proved as required)

Example 03:

If blank, then Show that ay + zbz + xcx + y = 1

Solution:

Given

Logarithms

∴ Log ay+z = k(y2 – z2) ……………. (1)

∴ Log bz+x = k(z2 – x2) ……………. (2)

∴Log cx+y = k(x2 – y2) ……………. (3)

Adding equations (1), (2) and (3)

Log ay+z + Log bz+x + Log cx+y  = k(y2 – z2) + k(z2 – x2) + k(x2 – y2)

∴ Log (ay+z bz+x cx+y) = k(y2 – z2 + z2 – x2 + x2 – y2)

∴ Log (ay+z bz+x cx+y) = 0

∴ Log (ay+z bz+x cx+y) = log (1)

∴ ay+z bz+x cx+y = 1

(Proved as required)

Example 04:

Ifblank then Show that xyz = 1

Solution:

Given

Logarithms

∴ Log x = k(ab – ac) ……………. (1)

∴ Log y = k(bc – ab) ……………. (2)

∴ Log z = k(ac – bc) ……………. (3)

Adding equations (1), (2) and (3)

Log x + Log y + Log z  = k(ab – ac) + k(bc – ab) + k(ac – bc)

∴ Log (xyz) = k(ab – ac + bc – ab + ac – bc)

∴ Log (xyz) = 0

∴ Log (xyz ) = log (1)

∴ xyz= 1

(Proved as required)

Example 05:

If blank Show that abc = 1

Solution:

Given

Logarithms

∴ Log a= k(x + y – 2z) ……………. (1)

∴ Log b = k(y + z – 2x) ……………. (2)

∴ Log c= k(z + x -2y) ……………. (3)

Adding equations (1), (2) and (3)

Log a + Log b + Log c= k(x + y – 2z) + k(y + z – 2x) + k(z + x -2y)

∴ Log (abc) = k(x + y – 2z + y + z – 2x + z + x -2y)

∴ Log (abc) = 0

∴ Log (abc) = log (1)

∴ abc = 1

(Proved as required)

Example 06:

If blank and a3b2c = 1, find value of k

Solution:

Given

Logarithms

∴ Log2a3 = 12x ……………. (1)

∴ Log2b2 = 12x ……………. (2)

∴ Log2c= 3kx ……………. (3)

Adding equations (1), (2) and (3)

Log2a3 + Log2b2 + Log2c  = 12x + 12x + 3kx

∴ Log2 (a3 b2c) = 24x + 3kx

∴ Log2 (1) = x(24 + 3k)

∴ 0 = x(24 + 3k)

∴ 24 + 3k = 0

∴ 3k = – 24

∴ K = – 8

Example 07:

If blankand a4b3c-2 = 1, find value of x

Solution:

Given

blank

∴ Loga4 = 4kx ……………. (1)

∴ Logb3 = 6k ……………. (2)

∴ Logc-2=  – 10k ……………. (3)

Adding equations (1), (2) and (3)

Loga4 + Logb3 + Logc-2  = 4kx + 6k – 10k

∴ Log(a4b3c-2) = k(4x + 6 – 10)

∴ Log2 (1) = = k(4x  – 4)

∴ 0 = k(4x  – 4)

∴ 4x – 4 = 0

∴ 4x = 4

∴ x = 1

Example 08:

If a2 = b3 = c5 = d6, then show that logdabc = 31/5

Solution:

Given

a2 = b3 = c5 = d6

∴ a = d6/2 = d3

∴ b = d6/3 = d2

∴ c = d6/5

∴ L.H.S. = logdabc

∴ L.H.S. = logd(d3 d2 d6/5)

∴ L.H.S. = logd(d31/5)

∴ L.H.S. = (31/5) logdd

∴ L.H.S. = (31/5)(1)

∴ L.H.S. = 31/5

(Proved as required)

Example 09:

If a2 = b3 = c4 = d5, then show that logabcd = 47/30

Solution:

Given

a2 = b3 = c4 = d5

∴ b = a2/3

∴ c = a2/4 = d1/2

∴ d = a2/5

∴ L.H.S. = logabcd

∴ L.H.S. = loga(a2/3  a1/2 a2/5)

∴ L.H.S. = loga(d47/30)

∴ L.H.S. = (47/30) logaa

∴ L.H.S. = (47/30)(1)

∴ L.H.S. = 47/30

(Proved as required)

Leave a Reply

Your email address will not be published. Required fields are marked *