In this article, we shall study to solve problems on logarithms in which a relation is given using which we have to prove another relation.
Laws of Logarithms
- Log a + Log b = Log (ab) (Law of Product)
- Log a – log b = log (a/b) b ≠ 0 (law of Quotient)
- Log am = m Log a (Law of exponent)
- Log (1) = 0
- Logaa = 1
Example 01:
If , then Show that abc = 1
Solution:
Given
∴Log a = k(y – z) ……………. (1)
∴ Log b = k(z – x) ……………. (2)
∴ Log c = k(x – y) ……………. (3)
Adding equations (1), (2) and (3)
Log a+ Log b + Log c = k(y – z) + k(z – x) + k(x – y)
∴ Log (abc) = k(y – z + z – x + x – y)
∴ Log (abc) = 0
∴ Log (abc) = log (1)
∴ abc = 1
(Proved as required)
Example 02:
If , then Show that axbycz = 1
Solution:
Given
∴ Log ax = k(xy – xz) ……………. (1)
∴ Log by = k(yz – xy) ……………. (2)
∴ Log cz = k(xz – yz) ……………. (3)
Adding equations (1), (2) and (3)
Log ax + Log by + Log cz = k(xy – xz) + k(yz – xy) + k(xz – yz)
∴ Log (ax by cz ) = k(xy – xz + yz – xy + xz – yz)
∴Log (ax by cz ) = 0
∴ Log (ax by cz ) = log (1)
∴ ax by cz = 1
(Proved as required)
Example 03:
If , then Show that ay + zbz + xcx + y = 1
Solution:
Given
∴ Log ay+z = k(y2 – z2) ……………. (1)
∴ Log bz+x = k(z2 – x2) ……………. (2)
∴Log cx+y = k(x2 – y2) ……………. (3)
Adding equations (1), (2) and (3)
Log ay+z + Log bz+x + Log cx+y = k(y2 – z2) + k(z2 – x2) + k(x2 – y2)
∴ Log (ay+z bz+x cx+y) = k(y2 – z2 + z2 – x2 + x2 – y2)
∴ Log (ay+z bz+x cx+y) = 0
∴ Log (ay+z bz+x cx+y) = log (1)
∴ ay+z bz+x cx+y = 1
(Proved as required)
Example 04:
If then Show that xyz = 1
Solution:
Given
∴ Log x = k(ab – ac) ……………. (1)
∴ Log y = k(bc – ab) ……………. (2)
∴ Log z = k(ac – bc) ……………. (3)
Adding equations (1), (2) and (3)
Log x + Log y + Log z = k(ab – ac) + k(bc – ab) + k(ac – bc)
∴ Log (xyz) = k(ab – ac + bc – ab + ac – bc)
∴ Log (xyz) = 0
∴ Log (xyz ) = log (1)
∴ xyz= 1
(Proved as required)
Example 05:
If Show that abc = 1
Solution:
Given
∴ Log a= k(x + y – 2z) ……………. (1)
∴ Log b = k(y + z – 2x) ……………. (2)
∴ Log c= k(z + x -2y) ……………. (3)
Adding equations (1), (2) and (3)
Log a + Log b + Log c= k(x + y – 2z) + k(y + z – 2x) + k(z + x -2y)
∴ Log (abc) = k(x + y – 2z + y + z – 2x + z + x -2y)
∴ Log (abc) = 0
∴ Log (abc) = log (1)
∴ abc = 1
(Proved as required)
Example 06:
If and a3b2c = 1, find value of k
Solution:
Given
∴ Log2a3 = 12x ……………. (1)
∴ Log2b2 = 12x ……………. (2)
∴ Log2c= 3kx ……………. (3)
Adding equations (1), (2) and (3)
Log2a3 + Log2b2 + Log2c = 12x + 12x + 3kx
∴ Log2 (a3 b2c) = 24x + 3kx
∴ Log2 (1) = x(24 + 3k)
∴ 0 = x(24 + 3k)
∴ 24 + 3k = 0
∴ 3k = – 24
∴ K = – 8
Example 07:
If and a4b3c-2 = 1, find value of x
Solution:
Given
∴ Loga4 = 4kx ……………. (1)
∴ Logb3 = 6k ……………. (2)
∴ Logc-2= – 10k ……………. (3)
Adding equations (1), (2) and (3)
Loga4 + Logb3 + Logc-2 = 4kx + 6k – 10k
∴ Log(a4b3c-2) = k(4x + 6 – 10)
∴ Log2 (1) = = k(4x – 4)
∴ 0 = k(4x – 4)
∴ 4x – 4 = 0
∴ 4x = 4
∴ x = 1
Example 08:
If a2 = b3 = c5 = d6, then show that logdabc = 31/5
Solution:
Given
a2 = b3 = c5 = d6
∴ a = d6/2 = d3
∴ b = d6/3 = d2
∴ c = d6/5
∴ L.H.S. = logdabc
∴ L.H.S. = logd(d3 d2 d6/5)
∴ L.H.S. = logd(d31/5)
∴ L.H.S. = (31/5) logdd
∴ L.H.S. = (31/5)(1)
∴ L.H.S. = 31/5
(Proved as required)
Example 09:
If a2 = b3 = c4 = d5, then show that logabcd = 47/30
Solution:
Given
a2 = b3 = c4 = d5
∴ b = a2/3
∴ c = a2/4 = d1/2
∴ d = a2/5
∴ L.H.S. = logabcd
∴ L.H.S. = loga(a2/3 a1/2 a2/5)
∴ L.H.S. = loga(d47/30)
∴ L.H.S. = (47/30) logaa
∴ L.H.S. = (47/30)(1)
∴ L.H.S. = 47/30
(Proved as required)