Categories
Trigonometry

Use of Trigonometric Functions Values of Standard Angles

In this article, we shall study to find the value of trigonometric expressions involving standard angles. Trigonometric functions values of some standard angles are given below:

Trigonometric functions values
Evaluate the following:

Example 01:

sin20c + sin2(π/6)c + sin2(π/3)c + sin2(π/2)c  

= (0)2 + (1/2)2 + (3/2)2 + (1)2

= 0 + 1/4 + 3/4 + 1 = 1+ 1 = 2

Ans: sin20c + sin2(π/6)c + sin2(π/3)c + sin2(π/2)c = 2

Example 02:

cos20 + cos2(π/6)c + cos2(π/3)c + cos2(π/2)c  

= (1)2 + (3/2)2 + (1/2)2 + (0)2

= 1 + 3/4 + 1/4 + 0 = 1+ 1 = 2

Ans: cos20 + cos2(π/6)c + cos2(π/3)c + cos2(π/2)c = 2

Example 03:

sin (π)c + 2 cos (π)c + 3 sin (3π/2)c + 4 cos (3π/2)c – 5 sec (π)c + 6 cosec (π/2)c

=  (0) + 2(-1) + 3(-1) + 4 (0) – 5 (-1) + 6 (1)

= 0 – 2 – 3 + 5 + 6 =  6

Ans: sin (π)c + 2 cos (π)c + 3 sin (3π/2)c + 4 cos (3π/2)c – 5 sec (π)c + 6 cosec (π/2)c = 6

Example 04:

sin (0)c + 2 cos (0)c + 3 sin (π/2)c + 4 cos (π/2)c + 5 sec (0)c + 6 cosec (π/2)c

= 0 + 2 (1) + 3 (1) + 4 (0) + 5 (1) + 6 (1)

= 2 + 3 + 0 + 5 + 6 = 16

Ans: sin (0)c + 2 cos (0)c + 3 sin (π/2)c + 4 cos (π/2)c + 5 sec (0)c + 6 cosec (π/2)c = 16

Example 05:

4 cot 45° – sec2 60° + sin2 30°

= 4 (1) – (2)2 + (1/2)2 

=  4  – 4 + 1/4  = 1/4

Ans: 4 cot 45° – sec2 60° + sin2 30° = 1/4

Verify the Following:

Example 06:

  • cot2 60° + sin2 45° + sin2 30° + cos2 90° = 13/12
  • Solution:

L.H.S. = cot2 60° + sin2 45° + sin2 30° + cos2 90°

∴ L.H.S. = (1/3)2  + (1/2)2 + (1/2)2 + (0)2

∴ L.H.S. =  1/3 + 1/2 + 1/4 = 5/6 + 1/4

∴ L.H.S. = 26/24 = 13/12 = R.H.S.

∴   cot2 60° + sin2 45° + sin2 30° + cos2 90° = 13/12  (Proved)

Example 07:

  • sin2 30° + cos2 60° + tan2 45° + sec2 60°  – cosec2 30° = 3/2
  • Solution:

L.H.S. = sin2 30° + cos2 60° + tan2 45° + sec2 60°  – cosec2 30°

∴ L.H.S. = (1/2)2  + (1/2)2 + (1)2  + (2)2 – (2)2

∴ L.H.S. =  1/4 + 1/4 + 1 + 4 – 4 = 2/4 +1

∴ L.H.S. = 1/2 + 1 = 3/2  = R.H.S.

∴  sin2 30° + cos2 60° + tan2 45° + sec2 60°  – cosec2 30° = 3/2   (Proved)

Example 08:

  • 4 cot2 30° + 9 sin2 60° – 6 cosec2 60°  -(9/4) tan2 60° = 4
  • Solution:

L.H.S. = 4 cot2 30° + 9 sin2 60° – 6 cosec2 60°  – (9/4) tan2 60°

∴ L.H.S. = 4 (3)2  + 9 (3/2)2 – 6 (2/3)2 – (9/4)(3) 2

∴ L.H.S. = 4 x 3  + 9 (3/4) – 6 (4/3) – (9/4)(3)

∴ L.H.S. = 12  + 27/4 – 8 – 27/4 = 4 = R.H.S,

∴ 4 cot2 30° + 9 sin2 60° – 6 cosec2 60°  -(9/4) tan2 60° = 4 (Proved)

Example 09:

Trigonometric functions values

Example 10:

Example 11:

  • If 2 cos2θ + 3cosθ = 2, then find cosθ.
  • Solution:

Given 2 cos2θ + 3cosθ = 2  i.e 2 cos2θ + 3cosθ – 2 = 0

let cosθ = x

∴ 2 x2 + 3x – 2 = 0

∴ 2 x2 + 4x – x – 2 = 0

∴ 2 x(x + 2) – 1(x + 2) = 0

∴ (x + 2)(2x – 1) = 0

∴ (x + 2) = 0 or (2x – 1) = 0

∴ x = – 2 or x = 1/2

∴ cosθ = – 2 or cosθ = 1/2

Now – 1 ≤ cos θ ≤ 1, thus cosθ = – 2 is not possible.

∴ cosθ = 1/2\

Example 12:

  • If 6sin2θ  – 11sinθ + 4 = 0, find cosθ.
  • Solution:

Given 6sin2θ  – 11sinθ + 4 = 0

let sinθ = x

∴ 6x2  – 11x + 4 = 0

∴ 6x2  – 8x – 3x + 4 = 0

∴ 2x(3x  – 4) – 1(3x – 4) = 0

∴ (3x  – 4)(2x – 1) = 0

∴ 3x  – 4 = 0 or 2x – 1 = 0

∴ x = 4/3 or x = 1/2

Now – 1 ≤ sin θ ≤ 1, thus sinθ = 4/3 is not possible.

∴ sinθ = 1/2

Example 13:

  • If 3tan2θ  – 43 tanθ + 3 = 0, then find tanθ.
  • Solution:

Given 3tan2θ  – 43 tanθ + 3 = 0

let tanθ = x

∴ 3x2  – 43 x + 3 = 0

∴ 3x2  – 33 x –3 x + 3 = 0

∴ √3 x 3 x2  – 33 x –3 x + 3= 0

∴ √3 x ( 3x – 3 )  – 1(3 x – 3) = 0

∴  (3x – 3 )( 3 x – 1) = 0

 ∴ 3x – 3  = 0 or 3 x – 1 = 0

∴ x = 3/3 or x = 1/3

∴ x = 3 or x = 1/3

∴  tanθ = 3 or tanθ = 1/3

Example 14:

  • If 4sin2θ  – 2(3 + 1)sinθ + 3 = 0, then find sinθ. Hence find the angle θ.
  • Solution:

Given 4sin2θ  – 2(3 + 1)sinθ + 3 = 0

let sinθ = x

∴ 4x2  – 2(3 + 1)x + 3 = 0

∴ 4x2  – 23x – 2x + 3 = 0

∴ 2x(2x  – 3) – 1(2x – 3 ) = 0

∴ (2x  – 3)(2x – 1) = 0

∴ 2x  – 3  = 0 or 2x – 1 = 0

∴ x = 3/2 or x = 1/2

∴  sinθ = 3/2 or sinθ = 1/2

∴ θ = sin-1(3/2) or θ = sin-1(1/2)

∴ θ = (π/3)c i.e. 60° or θ = (π/6)c i.e. 30°

Example 15:

  • Find the acute angles A and B satisfying cot (A + B) = 1 and cosec (A- B) = 2
  • Solution:

Given cot (A + B) = 1 and cosec (A- B) = 2

we know that cot 45° = 1 and cosec 30° = 2

∴ A + B = 45° and A- B = 30°

Adding the two equations we get

2A = 75° i.e. A = 37.5°

Subtracting the two equations we get

2B = 15° i.e. B = 7.5°

∴ A = 37.5° and B = 7.5°

Example 16:

  • Find the acute angles secA.cotB – secA – 2 cotB + 2 = 0
  • Solution:

Given secA.cotB – secA – 2 cotB + 2 = 0

secA.(cotB – 1) – 2 (cotB – 1) = 0

(cotB – 1)(secA – 2) = 0

∴ cotB – 1 = 0  and/or secA – 2 = 0

∴ cotB = 1 and/or secA = 2

∴B =  cot-11 and/or A = sec-12

∴B = (π/4)c i.e. 45° and/or A = (π/3)c i.e. 60°

∴ A = (π/3)c i.e. 60° and B = (π/4)c i.e. 45°

Leave a Reply

Your email address will not be published. Required fields are marked *