Categories
Physics

Composition of Two S.H.M.s

Science > Physics > Oscillations: Simple Harmonic Motion > Composition of Two SHM

In this article, we shall study the composition of two SHM. Sometimes particle is acted upon by two or more linear SHMs. In such a case, the resultant motion of the body depends on the periods, paths and the relative phase angles of the different SHMs to which it is subjected.

Consider two SHMs having same period and parallel to each other, where a1 and a2 are amplitudes of two SHMs respectively. a1 anda2 are initial phase angle of two SHMs respectively, whose displacements are given by

x1 = a1 Sin (ωt + α1)   and x2 = a2 Sin (ωt + α2)

Resultant displacement of the particle subjected to above SHMs is given by

x = x1 + x2

∴ x  = a1 Sin (ωt + α1)  +  a2 Sin (ωt + α2)

∴   x = a1 [Sinωt . Cosα1 + Cosωt . Sinα1] + a2 [Sinωt . Cosα2 + Cosωt . Sinα2]

∴   x = a1 Sinωt . Cosα1 + a1 Cosωt . Sinα1 + a2 Sinωt . Cosα2 + a2 Cosωt . Sinα2

∴   x = a1 Sinωt . Cosα1 + a2 Sinωt . Cosα2 + a1 Cosωt . Sinα+ a2 Cosωt . Sinα2

∴   x = Sinωt .(a1  Cosα1  + a2 Cosα2) + Cosωt . (a1 Sinα+ a2  Sinα2) ………….. (1)

Let, (a1 Cosα1  + a2 Cosα2)   = R Cos δ … (2)

(a1 Sinα+ a2 Sinα2) = R Sin δ    ……(3)

From Equations (1), (2) and (3)

x = Sin ωt (R Cos δ)   + Cos ωt (R Sin δ)

∴   x = R (Sin ωt Cos δ   + Cos ωt Sin δ)

∴ x = R Sin (ωt + δ)  ………..(4)

Equation (4) indicates that resultant motion is also a S.H.M. along the same straight line as two parent SHMs and of the same period and initial phase δ .

Squaring equations (2) and (3) and adding them

(R Cos δ)2+    (R Sin δ)2 =   (a1  Cosα1  + a2 Cosα2)2 +   ( a1 Sinα+ a2  Sinα2 )2

∴   R2 Cos2 δ+    R2 Sin2 δ =    a1Cosα1 + a2Cosα2 +2 a1 a2 Cos α1 Cos α2

+ a12 Sinα1 + a22Sin2α2 + 2 a1 a2 Sin α1 Sin α2

∴   R2 (Cos2 δ + Sin2 δ) =    a1(Cosα1 + Sinα1) + a2(Cosα2 + Sin2α2)

+2 a1 a2 (Cos α1 Cos α+Sin α1 Sin α2)

∴   R2 (1) =    a1(1) + a2(1) +2 a1 a2 Cos (α1 – α2)

∴   R2 =    a1+ a22 +2 a1 a2 Cos (α1 – α2)

Composition of Two SHM

Dividing equation (3) by (2)

Composition of Two SHM

From Equations (6) and (7) we can find the resultant and initial phase of resultant S.H.M.

Special Cases:

Case 1: When the two SHMs are in the same phase then (α1 – α2) =  0

Composition of Two SHM

If the two SHMs have the same amplitude then, a1 = a2 = a

∴ R   =  a + a   =  2a

Case 2: When the two SHMs are in opposite phase then, (α1 – α2) = π

blank

If the two SHMs have the same amplitudes then, a1 = a2 = a

R   = a – a = 0

Case 3: When the phase difference is (α1 – α2)   = π / 2

blank

If the two SHMs have the same amplitude then, a1 = a2 = a

blank

Previous Topic: Numerical Problems on Energy of Particle Performing S.H.M.

Next Topic: Theory of Simple Pendulum

Science > Physics > Oscillations: Simple Harmonic Motion > Composition of Two SHM

5 replies on “Composition of Two S.H.M.s”

Leave a Reply

Your email address will not be published. Required fields are marked *