Categories
Trigonometry

Trigonometric Ratios of Standard Angles in Third and Fourth Quadrants

In this article, we shall find values of trigonometric ratios of standard angles in the third and the fourth quadrants using a standard unit circle.

Trigonometric Ratios of 210o or (7π/6)c:

Let us consider a standard unit circle

Standard unit circle

Let m∠ AOP = θ = 210o = (7π/6)c

m∠ POM = 30o

Ray OA is the initial arm of the angle.

The terminal arm of the angle ray OP intersects the circle at P(x, y)

Let PM be perpendicular to OX’. Thus ΔOMP is 30o-60o-90o triangle

PM = 1/2(OP) = 1/2 (1) = 1/2  (side opposite to 30o)

OM = √3/2(OP) = √3/2 (1) = √3/2  (side opposite to 60o)

Point P is in the third quadrant

Hence x = -√3/2 an y = -1/2. Thus

sin 210o = y = – 1/2

cos 210o =  x = – √3/2

tan 210o =  y/x  = (-1/2)/(-√3/2) = 1/√3

cosec 210o = 1/y = 1/(-1/2) = – 2

sec 210o  =  1/x = 1/(-√3/2) = – 2/√3

cot 210o = x/y = (-√3/2)/(-1/2) = √3

sin 210o   sin (7π/6)ccos 210o   cos (7π/6)ctan 210o   tan (7π/6)ccosec 210o   cosec (π/6)csec 210o   sec (7π/6)ccot 210o cot (7π/6)c
– 1/2– √3/21/√3– 2– 2/√3√3

Trigonometric Ratios of 225o or (5π/4)c:

Let us consider a standard unit circle

Standard unit circle

Let m∠ AOP = θ = 225o = (5π/4)c

m∠ POM = 45o

Ray OA is the initial arm of the angle.

The terminal arm of the angle ray OP intersects the circle at P(x, y)

Let PM be perpendicular to OX’. Thus ΔOMP is 45o-45o-90o triangle

PM = 1/√2(OP) = 1/√2 (1) = 1/√2  (side opposite to 45o)

OM = 1/√2(OP) = 1/√2 (1) = √1/√2  (side opposite to 45o)

Point P is in the third quadrant

Hence x = – 1/√2 an y = – 1/√2. Thus

sin 225o = y = – 1/√2

cos 225o =  x = – 1/√2

tan 22o =  y/x  = (-1/√2)/(- 1/√2) =  1

cosec 225o = 1/y = 1/(-1/√2) = – √2

sec 225o  =  1/x = 1/(-1/√2) = – √2

cot 225o = x/y = (-1/√2)/(-1/√2) = 1

sin 225o   sin (5π/4)ccos 225o   cos (5π/4)ctan 225o   tan (5π/4)ccosec 225o   cosec (5π/4)csec 225o   sec (5π/4)ccot 225o cot (5π/4)c
– 1/√2– 1/√21– √2– √21

Trigonometric Ratios of 240o or (4π/3)c:

Let us consider a standard unit circle

Standard unit circle

Let m∠ AOP = θ = 240o = (4π/3)c

m∠ POM = 60o

Let PM be perpendicular to OX’. Thus ΔOMP is 30o-60o-90o triangle

PM = √3/2(OP) = 1/2 (1) = √3/2  (side opposite to 60o)

OM = 1/2(OP) = √3/2 (1) = 1/2  (side opposite to 30o)

Point P is in the third quadrant

Hence x = – 1/2 an y = – √3/2. Thus

sin 240o = y = – √3/2

cos 240o =  x = -1/2

tan 240o =  y/x  = (-√3/2)/(-1/2) = √3

cosec 240o = 1/y = 1/(-√3/2) = – 2/√3

sec 240o  =  1/x = 1/(-1/2) = – 2

cot 240o = x/y = (-1/2)/(-√3/2) = 1/√3

sin 240o   sin (4π/3)ccos 240o   cos (4π/3)ctan 240o   tan (4π/3)ccosec 240o   cosec (4π/3)csec 240o   sec (4π/3)ccot 240o cot (4π/3)c
– √3/2-1/2√3– 2/√3– 21/√3

Trigonometric Ratios of 270o or (3π/2)c:

Let us consider a standard unit circle

Standard unit circle

Let m∠ AOP = θ = 270o = (3π/2)c

Let PM be perpendicular to OX. M coicides with O

PM = 1  and OM = 0

Point P is on negative y-axis

Hence x = 0 an y = -1. Thus

sin 270o = y = -1

cos 270o =  x = 0

tan 270o =  y/x  (Not defined since x = 0)

cosec 270o = 1/y = 1/-1 = -1

sec 270o  =  1/x  (Not defined since x = 0)

cot 270o = x/y = 0/-1 = 0

sin 270o   sin (π/2)ccos 270o   cos (π/2)ctan 270o   tan (π/2)ccosec 270o   cosec (π/2)csec 270o   sec (π/2)ccot 270o cot (π/2)c
– 10– 10

Trigonometric Ratios of 300o or (5π/3)c:

Let us consider a standard unit circle

blank

Let m∠ AOP = θ = 300o = (5π/3)c

Let PM be perpendicular to OX. Thus ΔOMP is 30o-60o-90o triangle

PM = √3/2(OP) = 1/2 (1) = √3/2  (side opposite to 60o)

OM = 1/2(OP) = √3/2 (1) = 1/2  (side opposite to 30o)

Point P is in the fourth quadrant

Hence x = 1/2 an y = – √3/2. Thus

sin 300o = y = – √3/2

cos 300o =  x = 1/2

tan 300o =  y/x  = (-√3/2)/(1/2) = – √3

cosec 300o = 1/y = 1/(- √3/2) = – 2/√3

sec 300o  =  1/x = 1/(1/2) = 2

cot 300o = x/y = (1/2)/(- √3/2) = – 1/√3

sin 300o   sin (5π/3)ccos 300o   cos (5π/3)ctan 300o   tan (5π/3)ccosec 300o   cosec (5π/3)csec 300o   sec (5π/3)ccot 30o cot (5π/3)c
– √3/21/2– √3– 2/√32– 1/√3

Trigonometric Ratios of 315o or (7π/4)c:

Let us consider a standard unit circle

blank

Let m∠ AOP = θ = 315o = (7π/4)c

Ray OA is the initial arm of the angle.

The terminal arm of the angle ray OP intersects the circle at P(x, y)

Let PM be perpendicular to OX. Thus ΔOMP is 45o-45o-90o triangle

PM = 1/√2(OP) = 1/√2 (1) = 1/√2  (side opposite to 45o)

OM = 1/√2(OP) = 1/√2 (1) = 1/√2  (side opposite to 45o)

Point P is in the fourth quadrant

Hence x = 1/√2 an y = -1/√2. Thus

sin 315o = y = – 1/√2

cos 315o =  x = √1/√2

tan 315o =  y/x  = (-1/√2)/(1/√2) = – 1

cosec 315o = 1/y = 1/(-1/√2) = – √2

sec 315o  =  1/x = 1/(1/√2) = √2

cot 315o = x/y = (1/√2)/(-1/√2) = – 1

sin 315o   sin (7π/4)ccos 315o   cos (7π/4)ctan 315o   tan (7π/4)ccosec 315o   cosec (7π/4)csec 315o   sec (7π/4)ccot 315o cot (7π/4)c
– 1/√21/√2– 1– √2√2– 1

Trigonometric Ratios of 330o or (11π/6)c:

Let us consider a standard unit circle

blank

Let m∠ AOP = θ = 330o = (11π/6)c

Ray OA is the initial arm of the angle.

The terminal arm of the angle ray OP intersects the circle at P(x, y)

Let PM be perpendicular to OX. Thus ΔOMP is 30o-60o-90o triangle

PM = 1/2(OP) = 1/2 (1) = 1/2  (side opposite to 30o)

OM = √3/2(OP) = √3/2 (1) = √3/2  (side opposite to 60o)

Point P is in the fourth quadrant

Hence x = √3/2 an y = – 1/2. Thus

sin 330o = y = – 1/2

cos 330o =  x = √3/2

tan 330o =  y/x  = (-1/2)/(√3/2) = – 1/√3

cosec 330o = 1/y = 1/(-1/2) = – 2

sec 330o  =  1/x = 1/(√3/2) = 2/√3

cot 330o = x/y = (√3/2)/(-1/2) = – √3

sin 330o   sin (11π/6)ccos 330o   cos (11π/6)ctan 330o   tan (11π/6)ccosec 330o   cosec (11π/6)csec 330o   sec (11π/6)ccot 330o cot (11π/6)c
– 1/2√3/2– 1/√3– 22/√3– √3

Trigonometric Ratios of 360o or 2πc:

Let us consider a standard unit circle

blank

Let m∠ AOP = θ = 360o = 2πc

Ray OA is the initial arm of the angle.

The terminal arm of the angle ray OP intersects the circle at P(1, 0)

Hence x = 1 an y = 0. Thus

sin 360o = y = 0

cos 360o =  x = 1

tan 360o =  y/x  = 0/1 = 0

cosec 360o = 1/y (Not defined since y = 0)

sec 360o  =  1/x = 1/1 = 1

cot 360o = x/y (Not defined since y = 0)

sin 360o   sin (π)ccos 360o   cos (π)ctan 360o   tan (π)ccosec 360o   cosec (π)csec 360o   sec (π)ccot 360o cot (π)c
0101

Leave a Reply

Your email address will not be published. Required fields are marked *